Results of Proficiency Test Trace Metals in skin care Body Cream and Foundation October 2020

Organized by:Institute for Interlaboratory Studies
Spijkenisse, the NetherlandsAuthor:ing. M. Meijer

Correctors: ing. A.S. Noordman-de Neef & ing. R.J. Starink Report: iis20H05

January 2021

CONTENTS

1		3
2	SET UP	3
2.1	QUALITY SYSTEM	4
2.2	PROTOCOL	4
2.3	CONFIDENTIALITY STATEMENT	4
2.4	SAMPLES	4
2.5	ANALYZES	5
3	RESULTS	6
3.1	STATISTICS	6
3.2	GRAPHICS	7
3.3	Z-SCORES	7
4	EVALUATION	8
4.1	EVALUATION PER SAMPLE AND PER ELEMENT	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	9
4.3	COMPARISON OF THE PROFICIENCY TEST OF OCTOBER 2020 WITH THE PREVIOUS PT	10
4.4	EVALUATION ANALYTICAL DETAILS	11
5	DISCUSSION	11
6	CONCLUSION	11

Appendices:

1.	Data, statistical and graphic results	12
2.	Other reported Elements	22
3.	Analytical details	23
4.	Number of participants per country	24
5.	Abbreviations and literature	25

1 INTRODUCTION

Heavy metals like Aluminum, Antimony, Arsenic, Cadmium, Chromium, Iron, Lead, Mercury, Nickel and Zinc are found in a wide variety of cosmetics or personal care products like lipstick, toothpaste, eyeliner, body cream and foundation. Some metals are intentionally added as ingredients, while others are contaminants. Exposure to metals has been linked to health concerns including reproductive, immune and nervous system toxicity.

In Europe the current regulation for cosmetics is Council Directive 76/768/EEC. In Annex II there is a list of substances that cosmetics must not contain like Arsenic, Cadmium, Chromium, Lead and Mercury. Based on this European regulation China issued the Hygienic Standard for Cosmetics (HSC2007) with limit levels for certain heavy metals in 2007. In 2015 this standard was superseded by the Chinese Technical Safety Standards for Cosmetics (TSSC2015) which was implemented in 2016 (see table 1).

Element	HSC 2007	TSSC 2015	
Arsenic	≤10mg/kg	≤2mg/kg	
Cadmium	Not Specified	≤5mg/kg	
Lead	≤40mg/kg	≤10mg/kg	
Mercury	≤1mg/kg	≤1mg/kg	

Table 1: Limits for different Elements

No certified reference materials (CRMs) for Trace Metals in cosmetics are available to optimize the determination of the metals. As an alternative participation in a proficiency test may enable the laboratories to check their performance and thus to increase the comparability between laboratories.

Since 2019 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the determination of Trace Metals in skin care Body Cream and Foundation. During the annual proficiency testing program 2020/2021 it was decided to continue the proficiency test for the analysis of Trace Metals in skin care Body Cream and Foundation. In this interlaboratory study 17 laboratories from 12 different countries registered for participation. See appendix 4 for the number of participants per country. In this report the results of the proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send two different skin care samples; a Body Cream sample labelled #20690 of approximately 10 mL and a Foundation sample labelled #20691 of approximately 10 mL. Both samples were made positive with several heavy metals. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 QUALITY SYSTEM

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, has implemented a quality system based on ISO/IEC17043:2010. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

For the first sample a batch of regular body cream was purchased from a local supermarket and was artificially fortified with the metals Cadmium, Chromium, Mercury and Nickel. After homogenization 34 bottles of 10 mL were filled with body cream and labelled #20690. The homogeneity of the subsamples was checked by determination of Cadmium by using ICP-MS on four stratified randomly selected subsamples.

	Cadmium as Cd in mg/kg
sample #20690-1	16.768
sample #20690-2	16.634
sample #20690-3	15.886
sample #20690-4	16.125

Table 2: homogeneity test results of subsamples #20690

From the above test results the repeatability was calculated and compared with 0.3 times the estimated reproducibility calculated from the Horwitz equation in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Cadmium as Cd in mg/kg
r (observed)	1.167
reference method	Horwitz
0.3 * R (reference method)	1.443
T 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Table 3: evaluation of the repeatability of subsamples #20690

The calculated repeatability was in agreement with 0.3 times the target reproducibility. Therefore, homogeneity of the subsamples was assumed.

For the second sample a batch of a regular foundation was purchased from a local supermarket and was artificially fortified with the metals Cadmium, Chromium, Mercury and Nickel. From this batch 25 bottles of 10 mL were filled with foundation and labelled #20691. The homogeneity of the subsamples was checked by determination of Cadmium and Nickel by using ICP-MS on five stratified randomly selected subsamples.

	Cadmium as Cd in mg/kg	Nickel as Ni in mg/kg
sample #20691-1	13.508	4.666
sample #20691-2	12.875	4.440
sample #20691-3	12.880	4.374
sample #20691-4	13.861	4.356
sample #20691-5	13.732	4.536

Table 4: homogeneity test results of subsamples #20691

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding estimated reproducibility calculated from the Horwitz equation in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Cadmium as Cd in mg/kg	Nickel as Ni in mg/kg
r (observed)	1.311	0.359
reference method	Horwitz	Horwitz
0.3 * R (reference method)	1.216	0.480

Table 5: evaluation of the repeatabilities of subsamples #20691

The calculated repeatabilities were in agreement with 0.3 times the corresponding target reproducibility. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one sample labelled #20690 and one sample labelled #20691 were sent on September 23, 2020.

2.5 ANALYZES

The participants were requested to determine on samples #20690 and #20691 the concentrations of: Arsenic as As, Cadmium as Cd, Chromium as Cr, Lead as Pb, Mercury as Hg, Nickel as Ni, Aluminum as Al, Antimony as Sb, Iron as Fe and Zinc as Zn.

It was also requested to report if the laboratory was accredited for the requested elements that were determined and to report some analytical details.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results, a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis-cts/. The reported test results are tabulated per determination in appendices 1 and 2 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no re-analysis). Additional or corrected test results are used for the data analysis and the original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' (iis-protocol, version 3.5) of June 2018. For statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a dataset does not have a normal distribution, the (results of the) statistical evaluation should be used with due care. According to ISO5725 the original test results per determination were submitted to Dixon's, Grubbs' or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirements based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1 was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

This target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

 $z_{(target)}$ = (test result - average of PT) / target standard deviation

The $z_{(target)}$ scores are listed in the test result tables in appendix 1. Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows:

	z	< 1	good
1 <	z	< 2	satisfactory
2 <	z	< 3	questionable
3 <	z		unsatisfactory

4 EVALUATION

In this interlaboratory study some problems were encountered with the dispatch of the samples due to the COVID-19 pandemic. Therefore, the final reporting date was extended with one week. One participant reported test results after the final reporting date and one participant did not report any test results. Not all participants were able to report all tests requested. In total the 16 reporting laboratories submitted 106 numerical test results. No outlying test results were observed. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care.

4.1 EVALUATION PER SAMPLE AND PER ELEMENT

In this section the test results are discussed per sample and per element. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the reported test results in appendix 1. The abbreviations, used in these tables, are explained in appendix 5.

Unfortunately, a suitable reference test method, providing the precision data, is not available for the determinations of heavy metals in personal care products. Therefore, the calculated reproducibilities were compared against the estimated reproducibility calculated from the Horwitz equation.

Sample #20690, Body Cream

- <u>Cadmium as Cd:</u> This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Chromium as Cr</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in full agreement with the estimated reproducibility calculated from the Horwitz equation.

- <u>Mercury as Hg:</u> This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Nickel as Ni:</u> This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Other Elements:</u> The participants agreed on a concentration near or below the limit of detection for the other elements requested. Therefore, no z-scores were calculated. The reported test results are given in appendix 2.

Sample #20691, Foundation

- <u>Cadmium as Cd:</u> This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in full agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Chromium as Cr</u>: This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Mercury as Hg:</u> This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Nickel as Ni:</u> This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Aluminum as Al:</u> This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Iron as Fe:</u> This determination may be problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the estimated reproducibility calculated from the Horwitz equation.
- <u>Other Elements:</u> The participants agreed on a concentration near or below the limit of detection for the other elements requested. Therefore, no z-scores were calculated. The reported test results are given in appendix 2.

4.2 **PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES**

A comparison has been made between the reproducibility as declared by the reference test method or as declared by the estimated target reproducibility using the Horwitz equation and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation)

and the target reproducibility derived from literature reference test methods (in casu Horwitz Equation) are presented in the next table.

Element	unit	n	average	2.8 * sd	R(target)
Cadmium as Cd	mg/kg	14	14.6	2.9	4.4
Chromium as Cr	mg/kg	10	15.8	4.5	4.7
Mercury as Hg	mg/kg	16	1.5	0.7	0.6
Nickel as Ni	mg/kg	10	5.4	1.2	1.9

 Table 6: performance overview on sample #20690

Element	unit	n	average	2.8 * sd	R(target)
Cadmium as Cd	mg/kg	13	14.6	4.4	4.4
Chromium as Cr	mg/kg	9	15.7	7.1	4.6
Mercury as Hg	mg/kg	15	1.6	0.8	0.7
Nickel as Ni	mg/kg	9	5.2	2.2	1.8
Aluminum as Al	mg/kg	5	2050	932	291
Iron as Fe	mg/kg	5	15746	2454	1647

Table 7: performance overview on sample #20691

Without further statistical calculations, it can be concluded that there is not a good compliance of the group of participating laboratories with the reference target for the elements, except for Cadmium. See also paragraphs 4.1 and 5.

4.3 COMPARISON OF THE PROFICIENCY TEST OF OCTOBER 2020 WITH THE PREVIOUS PT

	October 2020	February 2019
Number of reporting laboratories	16	18
Number of test results	106	155
Number of statistical outliers	0	6
Percentage of statistical outliers	0.0%	3.9%

Table 8: comparison with previous proficiency tests

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared, expressed as relative standard deviation (RSD) of the PTs, see next table.

Element	October 2020	February 2019	Target	Conc. in mg/kg
Cadmium as Cd	7-11%	8-11%	10-11%	15-21
Chromium as Cr	10-16%	9-14%	10-11%	16-22
Lead as Pb	n.e.	13%	12%	5
Mercury as Hg	17-19%	54%	15%	1.5
Nickel as Ni	8-15%	7-10%	10-12%	5-22
Aluminum as Al	16%	n.a.	5%	2050
Iron as Fe	6%	n.a.	4%	15746

Table 9: development of the uncertainties over the years

4.4 EVALUATION ANALYTICAL DETAILS

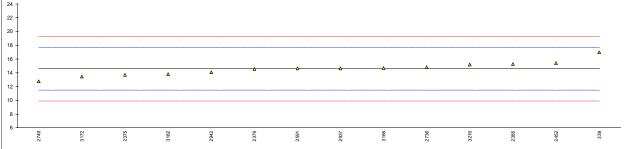
The participants were asked to provide some analytical details which are listed in appendix 3. Based on the reported answers by 15 participants the following can be summarized: Ten participants mentioned that they are ISO/IEC17025 accredited to determine the reported

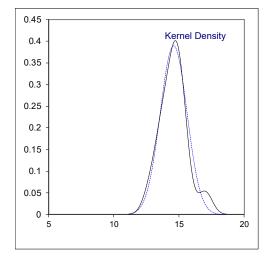
Ten participants mentioned that they are ISO/IEC17025 accredited to determine the reporte elements.

Fourteen participants used a sample intake between 0.1 - 0.5 grams.

Thirteen participants used ICP-MS to determine the metal content and two participants used ICP-OES.

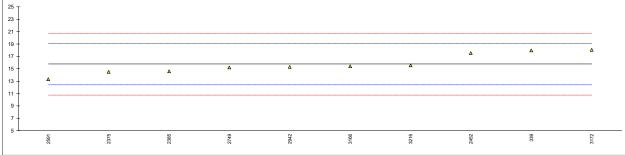
5 DISCUSSION

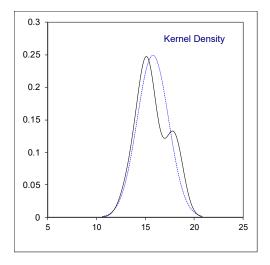

In this proficiency test the added metals in two different types of cosmetic products were correctly identified. The element Cadmium seems to be determined more easily and therefore more precise.


6 CONCLUSION

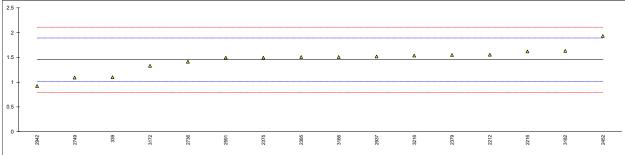
Each laboratory has to evaluate its performance in this study and make decisions about necessary corrective actions. Therefore, participation on a regular basis in this scheme could be helpful to improve the performance and thus increase of the quality of the analytical results.

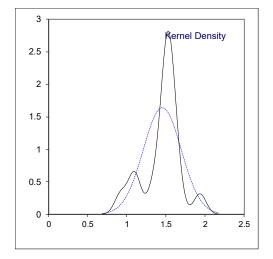
Determination of Cadmium as Cd in Body Cream, sample #20690; results in mg/kg


lab	method	value	mark	z(targ)	remarks
339	INH-176	17		1.55	
2212					
2216					
2320					
2375	In house	13.7		-0.57	
2379	INH-005	14.58		0.00	
2385	In house	15.3		0.46	
2452	ISO17276	15.41		0.53	
2591	In house	14.670		0.05	
2736	In house	14.807		0.14	
2749	In house	12.7766		-1.16	
2937	INH-05	14.67		0.05	
2942	In house	14.11		-0.30	
3166	In house	14.7		0.07	
3172	In house	13.44		-0.73	
3182	In house	13.820		-0.49	
3216	In house	15.207		0.40	
	normality	suspect			
	n	14			
	outliers	0			
	mean (n)	14.585			
	st.dev. (n)	1.0252	RSD=7%		
	R(calc.)	2.871			
	st.dev.(Horwitz)	1.5590			
	R(Horwitz)	4.365			

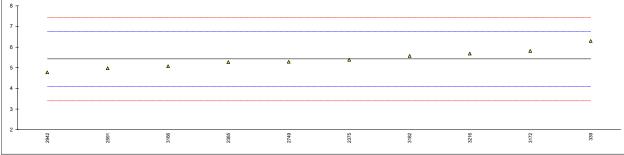


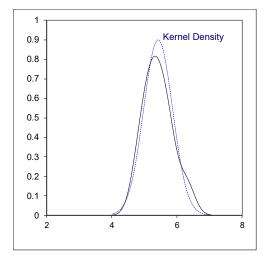
Determination of Chromium as Cr in Body Cream, sample #20690; results in mg/kg


lab	method	value	mark	z(targ)	remarks
339	INH-176	18		1.35	
2212					
2216					
2320					
2375	In house	14.5		-0.76	
2379					
2385	In house	14.6		-0.70	
2452	ISO17276	17.55		1.07	
2591	In house	13.326		-1.46	
2736					
2749	In house	15.2466		-0.31	
2937					
2942	In house	15.34		-0.25	
3166	In house	15.4		-0.22	
3172	In house	18.08		1.39	
3182	In house	Not analysed			
3216	In house	15.559		-0.12	
	normality	ОК			
	n	10			
	outliers	0			
	mean (n)	15.760			
	st.dev. (n)	1.6011	RSD=10%		
	R(calc.)	4.483			
	st.dev.(Horwitz)	1.6651			
	R(Horwitz)	4.662			

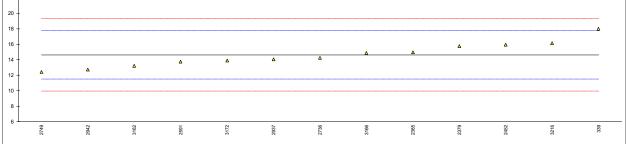


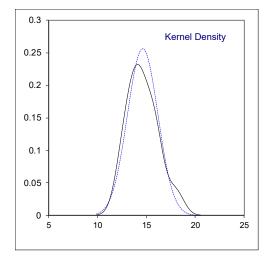
Determination of Mercury as Hg in Body Cream, sample #20690; results in mg/kg


lab	method	value	mark	z(targ)	remarks	
339	INH-176	1.1		-1.61		
2212	In house	1.56		0.49		
2216	In house	1.6237		0.78		
2320						
2375	In house	1.5		0.22		
2379	INH-005	1.55		0.44		
2385	In house	1.51		0.26		
2452	ISO17276	1.935		2.19		
2591	In house	1.498		0.21		
2736	In house	1.416		-0.17		
2749	In house	1.0955	С	-1.63	first reported 0.5973	
2937	INH-05	1.52		0.31		
2942	In house	0.922		-2.42		
3166	In house	1.51		0.26		
3172	In house	1.33		-0.56		
3182	In house	1.636		0.83		
3216	In house	1.537		0.38		
	normality	suspect				
	n	16				
	outliers	0				
	mean (n)	1.453				
	st.dev. (n)	0.2434	RSD=17%			
	R(calc.)	0.682				
	st.dev.(Horwitz)	0.2197				
	R(Horwitz)	0.615				

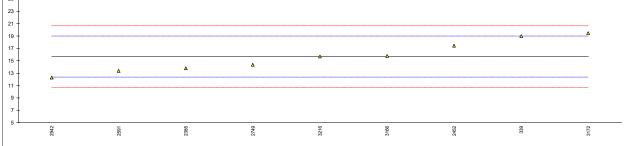


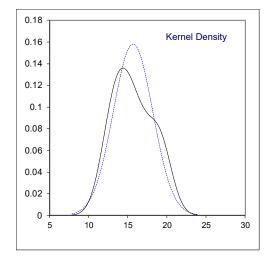
Determination of Nickel as Ni in Body Cream, sample #20690; results in mg/kg


lab	method	value	mark	z(targ)	remarks
339	INH-176	6.3		1.30	
2212					
2216					
2320					
2375	In house	5.4		-0.04	
2379					
2385	In house	5.28		-0.22	
2452	ISO17276	Not analysed			
2591	In house	4.984		-0.66	
2736					
2749	In house	5.3034		-0.18	
2937					
2942	In house	4.79		-0.94	
3166	In house	5.09		-0.50	
3172	In house	5.83		0.60	
3182	In house	5.583		0.23	
3216	In house	5.691		0.40	
	normality	ОК			
	n	10			
	outliers	0			
	mean (n)	5.425			
	st.dev. (n)	0.4437	RSD=8%		
	R(calc.)	1.242			
	st.dev.(Horwitz)	0.6730			
	R(Horwitz)	1.884			

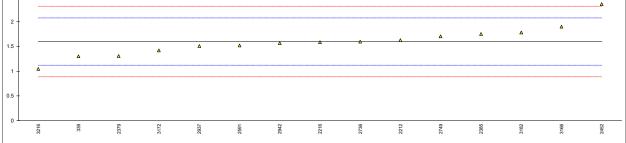


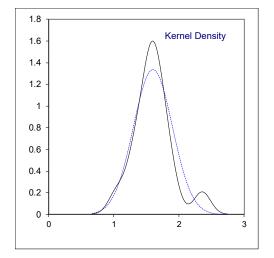
Determination of Cadmium as Cd in Foundation, sample #20691; results in mg/kg


lab	method	value	mark	z(targ)	remarks
339		18		2.15	
2212					
2216					
2320					
2375					
2379	INH-005	15.77		0.73	
2385	In house	15.0		0.24	
2452	ISO17276	15.979		0.86	
2591	In house	13.758		-0.56	
2736		14.263		-0.24	
2749	In house	12.427		-1.41	
2937	INH-05	14.06		-0.37	
2942		12.74		-1.21	
3166	In house	14.9		0.17	
3172	In house	13.92		-0.46	
3182	In house	13.246		-0.89	
3216	In house	16.156		0.97	
	normality	OK			
	n	13			
	outliers	0			
	mean (n)	14.632			
	st.dev. (n)	1.5567	RSD=11%		
	R(calc.)	4.359			
	st.dev.(Horwitz)	1.5633			
	R(Horwitz)	4.377			

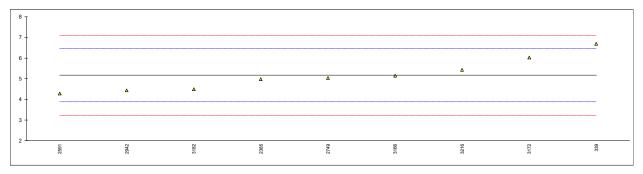


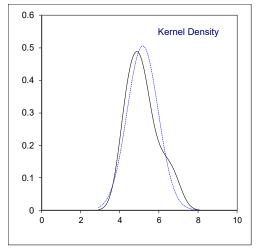
Determination of Chromium as Cr in Foundation, sample #20691; results in mg/kg


lab	method	value	mark	z(targ)	remarks
339		19		1.99	
2212					
2216					
2320					
2375					
2379					
2385	In house	13.8		-1.14	
2452	ISO17276	17.475		1.07	
2591	In house	13.380		-1.40	
2736					
2749	In house	14.3724		-0.80	
2937					
2942		12.28		-2.06	
3166	In house	15.8		0.06	
3172	In house	19.50		2.29	
3182	In house	Not analysed			
3216	In house	15.686		-0.01	
	normality	OK			
	n	9			
	outliers	0			
	mean (n)	15.699			
	st.dev. (n)	2.5234	RSD=16%		
	R(calc.)	7.066			
	st.dev.(Horwitz)	1.6596			
	R(Horwitz)	4.647			
	()				
25 т					
23 -					



Determination of Mercury as Hg in Foundation, sample #20691; results in mg/kg


lab	method	value	mark	z(targ)	remarks
339		1.3		-1.26	
2212	In house	1.63		0.13	
2216	In house	1.5874		-0.05	
2320					
2375					
2379	INH-005	1.31		-1.21	
2385	In house	1.75		0.63	
2452	ISO17276	2.355		3.17	
2591	In house	1.522		-0.32	
2736		1.600		0.00	
2749	In house	1.7061		0.45	
2937	INH-05	1.51		-0.38	
2942		1.572		-0.12	
3166	In house	1.90		1.26	
3172	In house	1.42		-0.75	
3182	In house	1.781		0.76	
3216	In house	1.048		-2.31	
	normality	not OK			
	n	15			
	outliers	0			
	mean (n)	1.599			
	st.dev. (n)	0.2993	RSD=19%		
	R(calc.)	0.838			
	st.dev.(Horwitz)	0.2384			
	R(Horwitz)	0.668			
	(/				



Determination of Nickel as Ni in Foundation, sample #20691; results in mg/kg

		<u> </u>			
lab	method	value	mark	z(targ)	remarks
339		6.7		2.36	
2212					
2216					
2320					
2375					
2379					
2385	In house	4.98		-0.30	
2452	ISO17276	Not analysed			
2591	In house	4.286		-1.37	
2736					
2749	In house	5.042		-0.20	
2937					
2942		4.44		-1.14	
3166	In house	5.15		-0.04	
3172	In house	6.03		1.32	
3182	In house	4.499		-1.04	
3216	In house	5.438		0.41	
	normality	OK			
	n	9			
	outliers	0			
	mean (n)	5.174			
	st.dev. (n)	0.7882	RSD=15%		
	R(calc.)	2.207			
	st.dev.(Horwitz)	0.6464			
	R(Horwitz)	1.810			

Determination of Aluminum as Al in Foundation, sample #20691; results in mg/kg

lab	method	value	mark	z(targ)	remarks	
339						
2212						
2216						
2320						
2375						
2379						
2385	In house	2164		1.10		
2452	ISO17276	Not analysed				
2591						
2736						
2749	In house	2476.2817		4.10		
2937						
2942		2082.98		0.32		
3166	In house	1560		-4.70		
3172	In house					
3182	In house	Not analysed				
3216	In house	1964.754		-0.82		
	normality	unknown				
	n	5				
	outliers	0				
	mean (n)	2049.603				
	st.dev. (n)	332.8535	RSD=16%			
	R(calc.)	931.990				
	st.dev.(Horwitz)	104.0720				
	R(Horwitz)	291.402				
^{воо} Т						
600 +						
400 -						
200 -					Δ	
2000 -		۵		Δ		
1800 -						
600 -	۵					
400 -						
100						

Determination of Iron as Fe in Foundation, sample #20691; results in mg/kg

lab	method	value	mark	z(targ)	remarks	
339						
2212						
2216						
2320						
2375						
2379						
2385	In house	15856		0.19		
2452	ISO17276	Not analysed				
2591						
2736						
2749	In house	14901.9732		-1.44		
2937						
2942	In house	15380.27		-0.62		
3166 3172	In house In house	15400 		-0.59		
3172	In house	 Not analysed				
3216	In house	17193.046		2.46		
3210	III HOUSE	17 193.040		2.40		
	normality	unknown				
	n	5				
	outliers	0				
	mean (n)	15746.258				
	st.dev. (n)	876.3418	RSD=6%			
	R(calc.)	2453.757				
	st.dev.(Horwitz)	588.2463				
	R(Horwitz)	1647.090				
20000 T						
19000 -						
18000 -						
17000 -						Δ
16000 -		۵		۵	A	
15000 -	Δ	Δ		<u> </u>		
14000 -						
13000 -						
12000	2749	2942		3166	2385	3216
	27,	షి		316	3	33

	A -	DL	A 1	0		7
lab	As	Pb	AI	Sb	Fe	Zn
339	<0.1	<0.1		<0.1		
2212						
2216						
2320						
2375	<0.083	<0.083		<0.083		
2379		Not detected				
2385	< 0.1	< 0.1	1.13	< 0.1	0.65	< 0.5
2452	0	0.391	Not analysed	0.073	Not analysed	Not analysed
2591	not detected	not detected		not detected		
2736	0.040	<0.024				
2749	nicht erkannt	nicht erkannt	1.1542	nicht erkannt	0.4749	nicht erkannt
2937	Not detected	Not detected				
2942	< 1,0	< 1,0	< 2,5	< 2,5	< 1,0	1.07
3166	<0.02	<0.02	<8	<0.002	0.6	<0.02
3172	< 1.0	< 1.0		< 1.0		
3182	<0.85	<0.85	Not analysed	not detected	Not analysed	Not analysed
3216	Not detected	Not detected	2.635	Not detected	1.374	Not detected

Other reported Elements in sample #20691; results in mg/kg Iab As Pb Sb Zn

lab	As	Pb	Sb	Zn
339	0.1	0.1	<0.1	
2212				
2216				
2320				
2375				
2379	Not detected	Not detected		
2385	< 0.1	< 0.1	< 0.1	0.76
2452	0.0695	0.262	0	Not analysed
2591	not detected	not detected	not detected	
2736	0.029	0.095		
2749	0.3327	0.0871	nicht erkannt	0.4333
2937	Not detected	Not detected		
2942	< 1,0	< 1,0	< 2,5	1.52
3166	0.09	0.08	<0.04	2.3
3172	< 1.0	< 1.0	< 1.0	
3182	<0.85	<0.85	Not detected	Not analysed
3216	Not detected	Not detected	Not detected	Not detected

Lab 3216 first reported 38.033 for Zn

Analytical details

ed by DMA
Hg erfolgte mit
ik

Number of participants per country

1 lab in FRANCE 1 lab in GERMANY 1 lab in HONG KONG 1 lab in ITALY 1 lab in SERBIA 2 labs in SPAIN 1 lab in SRI LANKA 1 lab in SWITZERLAND 3 labs in THAILAND 1 lab in TUNISIA 1 lab in TURKEY 3 labs in U.S.A.

Abbreviations

С	= final test result after checking of first reported suspect test result
---	--

- D(0.01) = outlier in Dixon's outlier test
- D(0.05) = straggler in Dixon's outlier test
- G(0.01) = outlier in Grubbs' outlier test
- G(0.05) = straggler in Grubbs' outlier test
- DG(0.01) = outlier in Double Grubbs' outlier test
- DG(0.05) = straggler in Double Grubbs' outlier test
- R(0.01) = outlier in Rosner's outlier test
- R(0.05) = straggler in Rosner's outlier test
- ex = test result excluded from statistical evaluation
- n.a. = not applicable
- n.e. = not evaluated
- n.d. = not detected

Literature

- 1 iis-Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation, June 2018
- 2 P.L. Davies, Fr Z. Anal. Chem, <u>351</u>, 513, (1988)
- 3 W.J. Conover, Practical; Nonparametric Statistics, J. Wiley&Sons, NY, 302, (1971)
- 4 ISO5725, (1986)
- 5 ISO5725, parts 1-6, (1994)
- 6 ISO13528:05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- G. Rohm, J. Bohnen & H. Kruessmann, GIT Labor-Fachzeitschrift, 1080, <u>11</u>, (1997)
- 10 Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>, 165-172, (1983)
- 11 Analytical Methods Committee, Technical brief, No 4, January 2001
- 12 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 13 Horwitz, W and Albert, R, J. AOAC Int, <u>79, 3</u>, 589, (1996)